Simulations stochastiques pour les graphes et apprentissage automatique

Description: 
Résumé :  
Bien qu’il ne soit pas pratique d’étudier la population dans de nombreux domaines et applications, l’échantillonnage est une méthode nécessaire permettant d’inférer l’information. Cette thèse est consacrée au développement des algorithmes d’échantillonnage probabiliste pour déduire l’ensemble de la population lorsqu’elle est trop grande ou impossible à obtenir. Les techniques Monte Carlo par chaîne de markov (MCMC) sont l’un des outils les plus importants pour l’échantillonnage à partir de distributions de probabilités surtout lorsque ces distributions ont des constantes de normalisation difficiles à évaluer. Le travail de cette thèse s’intéresse principalement aux techniques d’échantillonnage pour les graphes. Deux méthodes pour échantillonner des sous-arbres uniformes à partir de graphes en utilisant les algorithmes de Metropolis-Hastings sont présentées dans le chapitre 2. Les méthodes proposées visent à échantillonner les arbres selon une distribution à partir d’un graphe où les sommets sont marqués. L’efficacité de ces méthodes est prouvée mathématiquement. De plus, des études de simulation ont été menées et ont confirmé les résultats théoriques de convergence vers la distribution d’équilibre. En continuant à travailler sur l’échantillonnage des graphes, une méthode est présentée au chapitre 3 pour échantillonner des ensembles de sommets similaires dans un graphe arbitraire non orienté en utilisant les propriétés des processus des points permanents PPP. Notre algorithme d’échantillonnage des ensembles de k sommets est conçu pour surmonter le problème de la complexité de calcul lors du calcul du permanent par échantillonnage d’une distribution conjointe dont la distribution marginale est un kPPP. Enfin, dans le chapitre 4, nous utilisons les définitions des méthodes MCMC et de la vitesse de convergence pour estimer la bande passante du noyau utilisée pour la classification dans l’apprentissage machine supervisé. Une méthode simple et rapide appelée KBER est présentée pour estimer la bande passante du noyau de la fonction de base radiale RBF en utilisant la courbure moyenne de Ricci de ϵ−graphes.

 

Date: 
ven 10 jui 2020 14h00
Soutenance (lieu): 
Bâtiment M2 - salle de réunion
Directeur: 
WICKER Nicolas
Candidat: 
EID Abdelrahman
type de soutenance: 
Thèse