Lagrangian discretizations of compressible fluids and porous media flow with semi-discrete optimal transport

Orateur: 
Andrea Natale
Affiliation: 
Inria Lille
Dates: 
Jeudi, 20 Mai, 2021 - 11:00 - 12:00
Résumé: 

The equations of motion for compressible (barotropic) fluids have the structure of a simple conservative dynamical system when expressed in Lagrangian variables. This can be exposed interpreting the Lagrangian flow as a curve of vector-valued L2 functions, and the internal energy of the fluid as a functional on the same space. Particle methods are a natural discretization strategy in this setting, since in this case the flow is discretized using piecewise constant functions on a given partition of the domain, but they require some form of regularization to define the internal energy of the fluid. In this talk I will describe a particle method in which the internal energy is replaced by its Moreau-Yosida regularization in the L2 space, which can be efficiently computed as a semi-discrete optimal transport problem. I will also show how the convexity of the energy in the Eulerian variables can be exploited in the non-convex Lagrangian setting to prove quantitative convergence estimates towards smooth solution of this problem, and how this result generalizes to dissipative porous media flow.