Vers une prise en compte plus robuste et précise des effets capillaires lors de simulations d'écoulements multiphasiques en milieux poreux

Description: 
La séquestration du dioxyde de carbone (CCUS) constitue une technique puissante pour réduire la quantité de gaz à effet de serre émis dans l'atmosphère. En général, le CO2 est stocké dans des structures géologiques souterraines telles que des réservoirs de pétrole et de gaz épuisés ou des aquifères salins. Une fois injecté dans les formations, le CO2 est piégé en sous-sol au moyen de divers mécanismes de piégeage. Les hétérogénéités de la formation et les changements de mouillabilité interviennent dans l'un d'entre eux. Les discontinuités ainsi créées sont à la base du phénomène de barrière capillaire, qui joue un rôle crucial pour les écoulements en milieu poreux et en particulier dans les milieux fracturés. Pour les écoulements de Darcy, la pression capillaire est souvent modélisée comme une fonction de la saturation du fluide et du type de roche. Chaque lithologie correspond à une courbe de pression capillaire-saturation qui présente de fortes variations matérialisées par des asymptotes. Le changement de courbe induit par le changement de roche nécessite de définir précisément les conditions d'interface entre deux lithologies différentes afin de modéliser précisément l'écoulement ou le piégeage des fluides à travers cette interface. Compte tenu de ces caractéristiques et contraintes, des difficultés numériques peuvent apparaître lors de la simulation de ces écoulements, notamment lors des itérations de Newton. Certains choix de variables primaires peuvent être plus appropriés que d'autres. Dans cette thèse, nous cherchons à améliorer la robustesse de la méthode de Newton afin de surmonter les difficultés mentionnées ci-dessus et à proposer des stratégies pour renforcer les conditions de transmission aux interfaces en domaines hétérogènes. Notre travail suit un ordre de difficultés croissantes. Tout d'abord, nous commençons par considérer le modèle le plus simple, l'équation de Richards, dans des milieux homogènes. Ensuite, nous introduisons des hétérogénéités dans le domaine. Enfin, nous considérons le modèle complet dans une configuration difficile : le système diphasique incompressible immiscible dans un domaine hétérogène. Afin d'améliorer la robustesse, nous proposons une stratégie basée sur une bascule de la variable primaire. Elle est facilement implémentée grâce à une variable fictive permettant de décrire à la fois la saturation et la pression, que nous appelons technique de paramétrisation. Les tests numériques effectués confirment le potentiel de cette technique, qui permet de résoudre l'équation de Richards sans se soucier du choix de l'inconnue primaire et sans problème de convergence. Dans un domaine hétérogène, un schéma naïf sans prise en compte explicite des hétérogénéités souffre d'un manque de précision dans les résultats simulés. Cela motive l'introduction d'un traitement spécifique des interfaces. Ainsi, nous proposons et comparons plusieurs approches pour traiter la condition de transmission d'interface, analysant leurs avantages et inconvénients lorsqu'ils sont confrontés à différents paramètres physiques pour l'équation de Richards ainsi que le modèle d'écoulement diphasique de Darcy.

 

Date: 
jeu 16 déc 2021 14h00
Soutenance (lieu): 
IFP Energies nouvelles RUEIL-MALMAISON
Directeur: 
CANCES Clément
Candidat: 
BASSETTO Sabrina
type de soutenance: 
Thèse