Projets ANR et ERC
Plusieurs projets ANR et une ERC sont portés par le laboratoire Paul Painlevé.
- ERC Consolidator Grant nr. 615722, MOTMELSUM (2014 - 2019)
Les buts du programme de recherche sont le développement des transformations de Mellin pour les intégrales motiviques, attaquer la conjecture d'Igusa pour les sommes exponentielles, et des applications.
Porteur du projet : Raf Cluckers (Lille)
Membres impliqués : Saskia Chambile, Kien Huu Nguyen : doctorants, Dmitry Sustretov, Jorge Cely, Wouter Castryck : post-doctorants actuels, Pablo Cubides, Arne Smeets : anciens post-doctorants.
- ChroK (2016 - 2021)
"Chromatic homotopy and K-theory (CrhoK)"
The project builds upon the new foundations of algebraic topology, with the view to fundamental applications, notably in algebraic K-theory and in chromatic homotopy theory.
Membres impliqués : I. Dell'Ambrogio, A. Touzé (coordinateur local).
Coordinateur du projet : C. Ausoni (Paris 13).
- BECASIM (2013 - 2016)
La cohérence de la matière condensée à des températures proches de zéro absolu laisse présager des applications qui pourront révolutionner la technologie de demain. Le projet vise l’exploration numérique de ce type de systèmes (comme le condensat de Bose-Einstein) pour comprendre des configurations difficiles à étudier expérimentalement.
Membres impliqués : G. Dujardin, I. Lacroix-Violet (coordinatrice locale), A. Mouton.
Coordinateur du projet : I. Danaila (LMRS, Rouen).
- SUSI (2012 - 2016)
Singularités de surfaces.
Membres impliqués : P. Popescu-Pampu.
Coordinateur du projet : A. Bodin.
- HOGT (2011 - 2015)
"Algebraic Homotopy, Operads and Grothendieck-Teichmüller groups (HOGT)".
The general purpose of this proposal is to explore new connections between operads Grothendieck-Teichmüller groups and the theory of associators in view towards applications in algebra and in topology. Our first objective is the definition of suitable generalizations of the Grothendieck-Teichmüller group: a version attached to moduli spaces of curves of genus g>2 and a version attached to En-operads of dimension n>2. (En-operads are structures introduced in topology in the late 60s for the study of iterated loop spaces.) Our second purpose is to study various homology theories attached to En-operads and their applications for the construction of topological invariants associated to manifolds, or spaces with Poincaré duality. Our idea is to use actions of generalized Grothendieck-Teichmüller groups for this study. In parallel, we intend to study operadic generalizations of Drinfeld's associators, also related to our generalized Grothendieck-Teichmüller groups, for the purpose of developing applications of our researches to combinatorial structures, like graph complexes, which are naturally associated to operads.
Membres impliqués : liste de tous membres du LPP impliqués.
Coordinateur du projet : B. Fresse.
- Accueil
- Annuaire
- Equipes
- Evènements
- Congrès
- Invités
- Séminaires, Groupes de Travail et Colloquium
- Séminaires
- Analyse Complexe et Equations Différentielles
- Analyse Fonctionnelle
- Analyse Numérique et Equations Aux Dérivées Partielles
- Arithmétique
- Formes Automorphes
- Géométrie Algébrique
- Géométrie des espaces singuliers
- Géométrie Dynamique
- Histoire des Mathématiques
- Physique Mathématique
- Probabilités et Statistique
- Singularités et Applications
- Théorie Analytique et Analyse Harmonique
- Topologie
- Colloquium
- Groupes de Travail
- Analyse harmonique et théorie analytique
- Autour des fractales
- Calcul de Malliavin et processus fractionnaires
- Déformations des singularités de surfaces
- Equations aux dérivées partielles
- Extraction du signal
- Fondements mathématiques du deep learning
- Géométrie Non-Archimédienne
- Géométrie Stochastique
- Idéaux de Hodge
- Leçons d'Analyse
- Matrices Aléatoires
- Probabilités
- Statistique et Grande Dimension
- Systèmes Dynamiques
- Topologie
- W-algèbres
- Doctorants et Post-doctorants
- Séminaires
- Soutenances
- Anciens Séminaires et Groupes de Travail
- Formation par la Recherche
- Laboratoire
- Liens utiles
- Projets
- Recrutements
- Services