Groupe de Grothendieck-Teichmüller et des automorphismes opéradiques

Théorie de Galois et méthodes explicites

Lieu: 
Salle Kampé de Fériet - M2
Orateur: 
Benoit Fresse
Affiliation: 
Dates: 
Mercredi, 24 Février, 2010 - 17:15 - 18:15
Résumé: 

On expliquera une interprétation du groupe de Grothendieck-Teichmüller en termes d'automorphismes d'une structure d'opérade sur les groupes de tresses. On expliquera que cette structure d'opérade intervient dans la description de structures commutatives à homotopie près et permet de
caractériser certains complexes de déformations et des espaces de modules dérivés. On obtient de nouvelles actions du groupe de Grothendieck-Teichmüller sur ces complexes via notre description en termes d'automorphismes opéradiques.
Les idées de cet exposé sont largement inspirées de l'article de M. Kontsevich: "Operads and motives in deformation quantization". L'exposé se concentrera sur les bases de la théorie.