Irreducible values of polynomials

Théorie de Galois et méthodes explicites

Lieu: 
Salle Kampé de Fériet - M2
Orateur: 
Lior Bary-Soroker
Affiliation: 
Essen
Dates: 
Mercredi, 26 Mai, 2010 - 17:10 - 18:10
Résumé: 

Does there exist a polynomial f(X) such that all polynomials
f(X), f(X)+1, f(X)+2, ..., f(X)+285 are irreducible? Clearly the answer depends on the field the coefficients are taken from. We will discuss a generalization of this problem (aka Schinzel's hypothesis H for polynomial rings), some recent results, and the connection with Hilbert's irreducibility theorem.